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Note 

The Numerical Solution of a Class of 
Abel Integral Equations by Piecewise Polynomials 

THE METHOD OF PIECEWISE POLYNOMIALS 

In the study of the thermodynamic states of axially symmetric radiating plasma 
columns, the connection between radiance and emission coefficient is given by an 
Abel integral equation of the form 

Here, R denotes the radius of the plasma column. The radiance function I(x) 
(with I(x) = 0, x 3 R) is a function of the lateral coordinate x and is measured 
spectroscopically by a line probe taken at a certain number of points along the 
x-axis (see, for example, [I, 4, 8, 10, 161). Numerical methods for determining the 
unknown radial distribution of the emission coefficient f(r) have been considered 
by a number of authors. Almost all of these methods are based on the numerical 
evaluation of the inversion formula for the given Eq. (I), 

G-9 

(See Refs. [12, 18, 10, 16, 2, 1, 6, 9, 8, 7, 4, 11, 14, 151. A comprehensive survey of 
such methods (up to 1966) is contained in [4]). More recently, some authors have 
proposed direct methods for solving (1). Linz [14] uses finite-difference techniques 
to approximate f(r) at given uniformly spaced points; whereas, Weiss and 
Anderssen [20] and Weiss [19] apply so-called product integration which yields 
approximate values for f(r) at discrete (not necessarily uniformly spaced) points. 
Their approach, however, does not allow the order of the method to go beyond 
a certain limit (see [19]). In this note we describe a direct method for solving the 
Abel integral Eq. (1) which makes use of spline functions where the usual con- 
tinutity requirements are somewhat relaxed. To be precise, we shall only require 
continuty of the approximating function itself but not of any of its derivatives. To 
avoid confusion we call these functions in the following piecewise polynomials. 
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Let m > 1 be a given integer, and introduce the set of points 2 by 

2 = {x = Xk.0 : 0 = x,veo < xN-~.~ -=z *** < xoeo = R}, 

with N > 1. We denote the set of all piecewise polynomials s(r) of degree m and 
with knots 2 by S,(Z). For xk+l.O < r < xK.O (k = 0, l,..., N - 1) s(r) E S,(Z) 
shall have the representation 

with 

s(r) = Sk(r) = sk(xk.o) + g + (r - xk.o)Y, 
“Zl Urn 

(3) 

so(xo.o) = so(R) = f(R) = 0. 

Since s(r) is to be continuous for all 0 < r < R we have 

Skc%O> = %c&7c.0) = Sk-lhk-l.rn), k = I,..., N - 1 (4) 

with xlcwlsrn defined below. 
The unknown coefficients (ckel ,..., exam} in (3) will be computed recursively in 

the following manner. For a given value of k, define the points (xX.1 ,..., xkenz} by 

xk.0 > xk.1 > -'* > Xk.m = xk+l.O * 

We now require that Sk(r), together with the known representations Sk&),..., so(r), 
satisfy the given integral equation (1) at these points: 

= I(xk.jh j = l,..., m. 

This relation may be rewritten as 

2 s 
Q.O Sk(r) r dr 
3cIc.j (r2 - x2,.jY/2 

= ztxk.J) - 2 . F. Jl;;l.o ,,?z<k;;l,2 3 

j = l,..., m (k = O,..., N - 1). (5) 

For a given value of k relation (5) represents a system of m linear algebraic 
equations for the set of coefficients {c~.~ ,..., ck.J of SK(r). The coefficient matrix 
of the system is given by the elements 

s +b.o r(r - xk.O)y dr 
rb.j (r2 - xi.j)1/2 

(j, v = l,..., m). (6) 
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If integration by parts is carried out we obtain 

s %I (r - xk.,)“-l . (r2 - xfJP dr (j, v = l,..., m). (7) czk.] 
It follows by a standard result from the theory of interpolation (see, for example, 
[5, p. 261) that for any choice of the points {xk.J such that 

&cc+l.O = xk.m < Xk.m-1 < "' ( xk.1 < Xk.0 (k = o,..., N - 1) 

the matrices defined by (6) or (7) are all nonsingular. 
We return now to the given Abel integral equation (1) and the underlying physical 

problem. Suppose that the values for the radiance function I(x) have been obtained 
at the points 0 = z, < zMwl < 0.. < z, < z, = R. Let m > 1 be given, and, 
for simplicity, assume that M = N * m for some positive integer N. The knots Z of 
s(r) E S,(Z) are then given by setting 

xk.0 = zkm (k = 0, l,...) Iv). 

For a given value of k the points {&j} are chosen as 

zkm > Zkm+l > ‘*- > =km+m = Z(k+lh (k = 0, l,..., N - 1). 

We observe that the degree m of the piecewise polynomials s(r) need not be kept 
tied over the given interval 0 < r < R but may be altered whenever the physical 
situation justifies this. 

Results dealing with the convergence and the order of the method of piecewise 
polynomials will be given elsewhere (see also [31). Here, we shall illustrate the 
application and the efficiency of the method by presenting a numerical example. 

NLJMERICAL RESULTS 

For reasons of comparison we choose for the radiance function I(x) in (1) the 
same function used by Cremers and Birkebak [4, p. 10591. It is given at 31 uniformly 
spaced points in the interval 0 < x < 1, as indicated in Table I. Piecewise poly- 
nomials of degree m = 1 (with the given points taken as the knots 2) are used to 
compute numerical values for the emission coefficientf(r). The results are compared 
with those obtained by the method of Cremers and Birkebak [4] who used fourth- 
degree polynomials and least-squares techniques to computef(r) from formula (2). 

In Table I we list the errors e&& for the method of piecewise polynomials of 
degree one (column (I)) and for the method from [4] mentioned above (column (II)) 
at the knots &o = k/30 (k = 30, 29 ,..., l,O). 
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TABLE I 

k 

30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
20 
19 
18 
17 
16 
15 

4%.0) 
(1) (II) 

0.0000 0.0000 
-0.0010 -0.ooo4 
-0.ooo8 0.0003 
-0.ooo5 0.0003 
-0.ooo8 -0.0001 
-0.ooo5 -0.ooo4 
-0.ooo5 -0.ooo4 
-0.ooo5 -0.0001 
-0.0002 0.0000 
-0.ooo4 -0.0002 

0.0000 -0.0003 
0.0000 -0.ooo4 

-o.oooo -0.0003 
-0.ooo1 0.0000 

0.0003 0.0000 
0.0003 -0.0002 

14 0.0003 -0.6003 
13 0.0004 -0.ooo4 
12 0.0006 -0.0003 
11 0.0007 -0.ooo1 
10 0.0007 0.0029 
9 0.0007 0.0013 
8 0.0009 -0.0029 
7 0.0017 -0.0073 
6 0.0015 -0.0035 
5 0.0007 0.0036 
4 0.0002 0.0000 
3 -0.ooo1 -0.0012 
2 -0.0003 -0.0012 
1 -0.0018 0.0003 
0 -0.0029 0.0018 

All the computations were performed on the CDC 6400 (single precision) at Dalhousie Univers- 
ity Computer Center. 
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